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Influence of Slipping Friction on Stress Concentration in Blended Yarns

JOHN N. ROSSETTOS

Department of Mechanical, Industrial & Manufacturing Engineering, Northeastern University,
Boston, Massachusetts 02115, U.S.A.

THOMAS A. GODFREY

Natick Soldier Center, US Army Soldier & Biological Chemical Command Natick, Massachusetts 01760, U.S.A.

ABSTRACT

We report the effect of a variable frictional shear force distribution along a slipping
broken fiber on the stress concentration (SCF) in blended yarns. Our micromechanical
model leads to a system of second order differential equations, which we solve using a
convenient eigenvector expansion approach. The results for an exponential variation of
frictional shear on a slipping fiber, starting from zero at the broken end, are compared to
those for a constant friction force. While the extent of the slip region increases by as much
as 50% for the exponential variation compared to the constant friction case, the SCF

changes only slightly, generally decreasing less than 6%. Decreases are smaller when a
high elongation fiber is broken than when a low elongation fiber is broken. The hybrid
effect in blended yarns, established in previous work, continues to be supported by these
new results.

In studying damage growth (or the failure process) in
yarns with fiber breaks, the magnitude of the slip friction
that occurs near a broken slipping fiber plays an impor-
tant role. It is certainly not clear how the magnitude of
the friction force varies over the region where the broken
fiber slips. In a previous study [9], we assumed the slip
friction force was constant (“simple slip assumption”)
along the slip region, thereby simplifying the analysis. It
would be of interest to ascertain how a frictional force
that varies, starting from zero at the fiber break and
increasing exponentially at different rates over the slip
region, affects the results.

It is well known that blended yarns consisting of two
or more different fibers have improved strength and
stiffness compared to homogeneous yarns. We demon-
stated this so-called hybrid effect analytically in earlier
work [9] for yarns with two kinds of fibers, where we
showed that the stress concentration factor (SCF) of an LE

(low elongation) fiber next to a broken HE (high elonga-
tion) fiber decreases, while the SCF of an HE fiber next to
a broken LE fiber increases with decreasing values of the
hybrid parameter R, the ratio of the axial stiffness of the
HE to that of the LE fibers. (R � 1 represents homoge-
neous yarns, and smaller fractional values of R indicate
larger stiffness differences between the two fiber types.)
The aforementioned results indicate a positive effect for
yarns where the principal fibers are particular LE fibers

with dispersed HE fibers. We suggest that if the reduction
of the SCF of the principal LE fiber has a dominant effect
on the yarn strength compared with the increased SCF of
the HE fiber (especially since the HE fiber has a larger
failure strain), a hybrid effect can be realized.

Twisted fibrous structures such as yarns exhibit trans-
verse compressive forces induced by the remote tension
along the yarn axis. These forces permit load transfer to
occur between abutting fibers through friction and give
the yarn cohesiveness. With increasing yarn tension,
transverse compressive forces also increase because of
the quasi-helical path of each fiber through the yarn,
thereby increasing the magnitude of frictional load trans-
fer between fibers and the structural integrity of the yarn.
Representative past work on yarn stress analysis by
Hearle [3, pp. 175–212], Kilby [5], and Thwaites [10, 11]
considered a helical element of the twisted yarn, with no
attention given to broken fibers. However, the results for
yarn internal stresses obtained in these studies have mo-
tivated our model of frictional load transfer at slipping
fiber contact surfaces in the analytical treatment of bro-
ken fibers (Godfrey and Rossettos [2]. How such slipping
friction, and its variation along the slip region, affects the
SCF near a fiber break is an important objective of this
work. The SCF has traditionally provided an indication of
the load sharing by adjacent fibers next to fiber breaks.
This information has been employed in the past to pre-
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dict strength using the stochastic aspects of the failure
process, from the early work of Daniels [1] to represen-
tative recent work by Phoenix [6], Pitt and Phoenix [7],
and Realff et al. [8]. The work by Realff et al. [8] yielded
important results for the failure of blended yarns.

The micromechanical model for a blended yarn, which
we developed earlier [2] and used again [9] with some
modification, will be modified again in this paper to treat
a varying slip friction force along the slip region. The
model consists of the same number LE and HE fibers
undergoing axial extension, with a fiber break in the
central region of the hybrid fiber array. The stress con-
centration in the fibers adjacent to the break will depend
in an important way on whether the broken fiber is HE or
LE. Note that our mathematical model has a mathematical
structure similar to Hedgepeth and Van Dyke’s [4] shear-
lag model for a three-dimensional fiber composite, where
the load transfer from the broken fiber to the adjacent
intact fiber takes place by shear of the matrix. For packed
fiber arrays in hybrid yarns, load transfer occurs through
geometry changes in the fibers and surface friction

Analysis

We developed the fundamental differential equations
of our model, together with the important deformation
mechanisms, in reference [9]. For completeness, we will
briefly include the basic development here, together with
the modifications necessary for this new analysis. In our
model of a twisted yarn, the fibers follow helical paths
[3] and lie in co-axial concentric layers. In the central
region of the yarn, the fibers are nearly parallel to the
yarn axis, and they experience the highest strains during
yarn extension. Since rupture usually starts in the central
region, we base our model in this region. Near the yarn’s
center, the microstructure is represented by a square
packed array of parallel fibers, where we assume roughly
similar cross-sectional dimensions for HE and LE fibers
[9].

We derive the equations of our model by considering
an equal number of HE and LE fibers. A typical finite array
is shown in Figure 1. The fibers are numbered (n, m),
where n is the column number and m is the row number.
In Figure 1, the shaded fibers are LE and the blank fibers
are HE. The center fiber (0,0) in Figure 1 is an HE fiber
and will be considered broken in the development to
follow. The array is extended in the x-direction to a strain
�. The displacement reference is taken as the position of
points on an undamaged fiber array under the same
strain. The square region in Figure 1 exhibits eight-fold
symmetry, and this will reduce the number of equations
needed for the analysis.

The equilibrium equation for an (n, m) fiber in the
case where there is no slip between fibers considers
the shear forces (surface friction between fibers) act-
ing on the (n, m) fiber from its four abutting fibers in
Figure 2. The shear flow (shear force per unit length)
is assumed [2] to be proportional to the difference in
the displacement of the two abutting fibers. For instance,
the shear flow qn, n � 1

m, caused by the (n � 1, m) fiber
on the (n, m)th fiber, is taken as

FIGURE 2. (a) n, mth fiber and abutters, (b) n, mth fiber equilibrium.

FIGURE 1. Numbering scheme for a finite section of a fiber array;
LE fiber shown shaded.
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qn, n�1
m � k�un�1, m � un, m� . (1)

The displacement pattern is taken so that the shear forces
on the (n, m) fiber by the (n � 1, m) and (n, m � 1) fibers
in Figure 2a are in the positive x-direction, while the
forces on the (n, m) fiber by the (n � 1, m) and (n, m � 1)
fibers are in the negative x-direction. E*A* and E A are
the effective axial stiffness of the HE and LE fibers,
respectively. Introduce un,m as the axial (x-direction)
displacement of fiber (n, m) at position x. If (n, m) is an
HE fiber, then in Figure 2b, dF � E*A*(d2un,m/dx2)dx, so
that equilibrium for fiber (n, m) can be written as

E*A*
d2un,m

dx2 � k�un�1,m � un,m� � k�un,m � un�1,m�

� k�un,m�1 � un,m� � k�un,m � un,m�1� � 0 . (2)

Nondimensional quantities, � and Un,m are defined by

x � �E*A*/k� , un,m � ��E*A*/kUn,m . (3)

Equation 2 can then be written as

Un,m� � �Un�1,m � Un�1,m � Un,m�1

� Un,m�1 � 4Un,m� � 0 , (4)

where primes denote differentiation with respect to �. It
is instructive to write equations for fibers (0,0), (1,0) and
(1,1). Using Equation 4 to write the equation for fiber
(0,0) and noting the symmetry in Figure 1, where U0,1

� U1,0 � U�1,0 � U0,�1 , the equation can be written as

U0,0� � 4�U1,0 � U0,0� � 0 . (5)

In a similar fashion, the equation for fiber (1,1) can be
obtained from Equation 4 by noting that U1,2 � U2,1 and
U0,1 � U1,0 , which gives

U1,1� � �2U2,1 � 2U1,0 � 4U1,1� � 0 . (6)

Since fiber (1,0) is an LE fiber its equation takes on a
slightly different form than Equation 4. Its equilibrium
equation (using u1,�1 � u1,1 from symmetry) is given by

EAd2u1,0/dx2 � ku2,0 � 4ku1,0 � k0,0 � 2ku1,1 � 0 . (7)

Using Equation 3, we can write Equation 7 in nondimen-
sional form as

U1,0� � R�U2,0 � 2U1,1 � U0,0 � 4U1,0� � 0 , (8)

where R�E*A*/EA. The parameter R is equal to 1 for
nonhybrids and takes on fractional values in the range
1/6 � R � 1 for blended (hybrid) yarns.

SLIP NEAR A FIBER BREAK

Assume slip occurs between the broken HE fiber and
the abutting LE fibers (Figure 1), near the break, in the
region 0 � x � a. For the HE fiber (0,0), equilibrium
gives

E*A*d2u0,0 /dx2 � 4qsg�� � � 0 , (9)

where qs is a shear flow magnitude, so that qsg(�) is the
shear/unit length along the contact line. The function
g(�) provides the variation of shear due to friction along
the contact line and is given by

g�� � � �1 � e����/�1 � e���� , (10)

where � is the dimensionless slip region extent, so that
a � �E*A*/k�. The function g(�) is plotted in Figure 3
for various values of the parameter � (�ga).

If we define a shear parameter Q by Q �qs /��kE*A*
and use Equation 3, Equation 9 becomes

U0,0� � 4Qg�� � � 0 . (11)

For the LE fiber (1,0), slip occurs along the contact line
with the HE fiber (0,0), but there is no slip between it and
the other three abutters. Writing the equilibrium equation
and using symmetry, so that U1,�1 � U1,1 , the nondi-
mensional equation can be derived as

U1,0� � R�U2,0 � 3U1,0 � 2U1,1� � RQg��� � 0 . (12)

For the HE fiber (1,1) there are no slip surfaces, so
equilibrium gives an equation identical to Equation 6.

We developed an expression for the shear flow mag-
nitude, qs in our earlier work [9]. We considered various

FIGURE 3. The function g(�) versus � for various values
of � (�ga); � � 1.
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factors, including the lateral “hydrostatic” stress experi-
enced by the fiber, the yarn surface helix angle, the axial
strain, and the coefficient of friction between slipping
fiber surfaces. Since qs is expected to increase with
strain, leveling off as the yarn approaches a taut condi-
tion, the shear flow is given by qs � 	0dE� �1�n
, where
E� is the axial stiffness of the fiber array, d is the average
fiber spacing, 	0 is a constant and 
 is a function of the
yarn helix angle. The friction index n can take on frac-
tional values. We use values of n ranging from 0.5 to 0.9
in these results. Next we define a nondimensional shear
flow by q�s � qs/	0dE� 
. When plotted against strain �,
the quantity, q�s, as indicated in Figure 4, approaches
(asymptotic) taut condition values more steeply when n
� 0.9 than say, when n � 0.5. Values of n at the higher
end, n � 0.9, represent stiffer yarns where tautness
occurs at lower strains. Values of n at the lower end, n
� 0.5, represent more flexible yarns.

NONDIMENSIONAL FIBER LOADS

We denote by pn,m and pn,m* the changes in loads in
the LE and HE fibers, respectively, due to a fiber break.
Far from the break, these loads are denoted by p and p*,
respectively. Dimensionless loads Pn,m and Pn,m* are
then defined by (pn,m, pn,m*) � p* (Pn,m, Pn,m*).

We assume a uniform strain far from the break, so that
the strain there can be written as � � p*/E*A* � p/EA.
The total load in, say, the HE fiber adjacent to the break
is then given by p* � pn,m*, where p* is the reference
load before the break. Noting that pn,m* � E*A*dun,m*/
dx, and using Equations 3 and the definition of dimen-
sionless loads, the total nondimensional load for the HE

fiber can be written as Pn,m* � 1 � Un,m�. Note that,
by definition, Pn, m* � pn, m*/p* is in fact, the stress

concentration factor (SCF). With the expression for qs

� 	0dE� �1�n
 and noting that the strain � � p/EA, the
shear parameter Q, can be written as

Q �
	0dE� 
�EA�n

pn�kE*A*
. (13)

BOUNDARY VALUE PROBLEM

Because of the eight-fold symmetry, we need only
write equations in a right triangular wedge, where the
rows and columns number from 0 to M (M � 3 in Figure
1). It turns out that choosing M � 2 or 4 makes a
negligible difference in the results, indicating that the
significant deformations occur near the broken fiber.

Although we derived the equations here for only the
center HE fiber (0,0) and its neighboring fibers (Equations
5, 6, 8, 11, 12), the equations for a larger wedge (M
� 3, 4, . . .) can be developed in a similar and straight-
forward manner. In general, we will be dealing with a
system of second-order differential equations. For illus-
trative purposes, the solution procedure will be described
for the small wedge consisting of fibers (0,0), (1,0), and
(1,1). The associated square region consists of nine fi-
bers, and the influence of fibers outside the square is
neglected. The eigenvector expansion technique used
here is very convenient for larger systems such as six-
fiber or greater wedges.

Slip will occur between the broken HE fiber (0,0) and
its LE abutters (Figure 1) in a region 0 � x � a, where a
is the extent of the slip region. The corresponding di-
mensionless slip region extent is denoted by �, where
a � �E*A*/k� using Equation 3. The unit cell is di-
vided into region 1, 0 � � � �, where slip occurs, and
region II, � � �, where no slip occurs. The system of
equations in the nonslip region II consists of Equations 5,
6, and 8. In the eigenvector expansion technique, the
equations are written in matrix form as

d2U/d�2 � AU � 0 , UT � 	 U0,0 U1,0 U1,1 
 , (14)

where A is an appropriate matrix consistent with the
solution vector U. Since the equations have constant
coefficients, a solution is assumed in the form U � Re��,
where R is of the same order as U. Substituting into
Equation 14 gives AR � �2 R. Using MATLAB, eigen-
values l1 , l2 , l3 (li � ��i

2) and corresponding eigenvec-
tors r1 , r2 , r3 are easily obtained. The solution is then
given by

U � �
i�1

3

ciri e
�li� , (15)

FIGURE 4. Shear flow parameter q�s versus axial strain �
for various values of friction index n.
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where positive exponents are dropped for bounded solu-
tions in region II as �3 �. The constants of integration
ci are determined using appropriate continuity condi-
tions.

In region I (slip region), Equations 11, 12, and 6 apply.
Since Equation 11 is decoupled from the others, it can be
integrated directly. The other equations need to be solved
simultaneously and include particular solutions that are
functions of �, often providing a challenge. The homo-
geneous equations are easily solved using the eigenvec-
tor expansion, and they include both positive and nega-
tive exponentials. The boundary conditions at x � 0
apply to solutions in region I. Since fiber (0,0) is stress-
free (broken) so that P0,0* � 0, the equation Pn,m* � 1
� Un,m� for the load gives U0,0� � �1. For the intact
fibers at � � 0, symmetry gives Un,m (0) � 0, (n, m)
� (0,0). The solutions in the slip region for the small
wedge (M � 2), which satisfy these boundary conditions,
can be written as

U0,0 �
2Q

d
�2 � �1 �

4Q

�d�� � A0 �
4Q

�2d
e��� . (16)

For the remaining equations, the kth component of the U
vector (U1 � U1,0; U2 � U1,1) is

Uk � ��
i�1

2

2Ai rk
i sinh (li�) � �Q/d� �

i�1

2

rk
ifi e

li� � Upk .

(17)

The particular solution components are Up1 � (Q/2d)(1
� f3e���), Up2 � (Q/4d)(1 � f4e��� ), and d � 1 � e���.
The quantities fi (i � 1, . . .4) are given in terms of �, R,
and appropriate components of the eigenvectors ri (li are
corresponding eigenvalues) in the slip region. The con-
stants of integration A0 , A1 , A2 and the quantity Q also
need to be determined by requiring continuity between
regions I and II at � � �, where fibers are continuous.
The following continuity conditions hold; Un,m

I (�)
� Un,m

II (�), Un,m�I (�) � Un,m�II (�). An additional
condition arises from the assumption that slipping is
approached in a continuous manner—the shear flows on
the broken fiber in the nonslipping region approach those
in the slipping region as � 3 �. Using Equations 5 and
11, this condition may be written as Q � [U0,0

II (�)
� U1,0

II (�)].
The solution process proceeds by selecting values of

the slip region extent � (this defines the two regions), and
then determining the values of the integration constants
and parameter Q such that the continuity conditions are
satisfied. Results for the stress concentration factor (SCF)
and slip extent will be plotted against the parameter p/pL,
where pL is the applied load far from the break, which

just starts slipping, and p is the corresponding current
load above that value. The ratio p/pL can be obtained
from Equation 13, where Q is proportional to 1/pn for
fixed material and geometric properties. Therefore, we
get p/pL � (QL/Q)1/n, where QL is the corresponding
value of Q when slipping just begins. Since the values of
QL and Q are obtained as part of the solution process,
p/pL can be calculated.

Results and Discussion

The equations in the text have been developed for a
broken center HE fiber. To obtain results for a broken LE

fiber, the equations are modified as follows. An R (hybrid
parameter) is placed in front of the parentheses in Equa-
tions 5 and 6, and is removed from Equation 7. Also, an
R is placed before the Q term in Equation 12 and re-
moved completely (two places) from Equation 13.

The nondimensional slip extent � is plotted against
p/pL in Figure 5 for various values of � (� ga) for the
case where an LE fiber is broken. Recall that values of �
determine the degree of frictional variation in the slip
region (see Equation 10). Note also that pL is the remote
(far from the break) fiber load, which just initiates slip-
ping, while p is the current load value above pL. Curves
are given for a fixed value of the hybrid parameter, R and
for a value of n � 0.8. As shown in Figure 3, the curve
for � � 200 depicts an essentially constant friction along
the slip region. In Figure 5, an increase in slip extent of
about 50% is indicated over the range of p/pL as values
of � decrease from 200 to 3. The smaller value of �
represents less friction, hence the larger slip extent. It
also turns out that for a value of spring index n � 0.5 (not

FIGURE 5. Slip extent � versus p/pL; LE fiber is broken, n � 0.8.
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shown) and a fixed value of � � 3, there is a 30%
decrease in slip extent compared to that for n � 0.8.
These changes are much less severe for stress concen-
tration (SCF). In Figure 6, the SCF in the intact fiber
adjacent to the broken fiber is plotted against p/pL for the
same conditions as in Figure 5. The SCF is less than 6%
different between the curves for � � 200 and � � 3 and
is smaller for � � 3. Also, the SCF is only 2.5% higher for
n � 0.5 as compared to n � 0.8 for � � 3.

In Figures 7 and 8, all conditions are the same as for
Figures 5 and 6, except that now the broken fiber is an HE

fiber. A 50% increase in slip extent is again observed in
Figure 7 as � goes from 200 to 3. When n � 0.5 (not
shown), we get a 40% smaller slip extent than for n
� 0.8, for � � 3. Figure 8 shows that when an HE fiber
is broken, the results are very different from when an LE

fiber is broken. First, the level of SCF is very small, and
the changes as � goes from 3 to 200 are less than 1%.
Also the n � 0.5 case shows negligible change. It ap-
pears that the higher load carried by the stiffer fiber (LE

fiber) for a given strain level is partly transferred, when
it breaks, to the adjacent fiber, thereby yielding the
higher SCF shown in Figure 6. Note, also, the fact that the
SCF decreases as the friction index n increases which can
be explained by observing that for a given axial strain �,
the shear flow q�s will increase with n as shown in Figure
4. This implies that for a larger n, a given slip region,
with the larger shear (friction) forces developed, will
take on more of the load of the broken fiber and hence
lead to a smaller SCF. We can also interpret this as more
energy being dissipated in the slip region.

In Figure 9, the SCF is plotted against the hybrid
parameter R for various values of �. The load level is
selected as p/pL � 2, and the separate cases of HE and LE

broken fibers are both shown. The sensitivity of SCF to R
is clearly indicated, with a more sharply increasing SCF

for the case where an LE fiber is broken, and a mildly
decreasing SCF in the case where an HE fiber is broken. As
we can see, this trend is established for the range of
values of � from 3 to 200, so that the choice of �
(frictional variability) does not alter the important effect
of the hybrid parameter R. We also discussed this in our
earlier work [9], indicating a beneficial hybrid effect in
blended yarns.

Conclusions

We have studied the effect of frictional shear along
slipping fibers near a fiber break for blended yarns,

FIGURE 6. Stress concentration factor (SCF) versus p/pL;
LE fiber is broken, n � 0.8.

FIGURE 7. Slip extent � versus p/pL; HE fiber is broken, n � 0.8.

FIGURE 8. Stress concentration factor (SCF) versus p/pL;
HE fiber is broken, n � 0.8.
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consisting of an equal number of low elongation (LE) and
high elongation (HE) fibers, undergoing axial extension.
In general, the friction force on the slipping fiber is
variable. In the model used here, it is taken to be zero at
the cut end if the fiber has an exponential variation as it
approaches a constant value with increasing distance
from the break. The steepness of the approach to a
constant value depends on a parameter �. The slip region
extent and the stress concentration (SCF) are determined
for various values of � and compared with the results,
assuming constant friction (obtained for very large val-
ues of �, such as � � 200). In general, the smaller value
of � � 3 gives about a 50% increase in slip region extent
compared to � � 200 for a range of load levels. The SCF,
however, shows differences of less than 6% between �
� 200 and � � 3, and is smaller for � � 3. The
differences are greater when an LE fiber is broken than
when an HE fiber is broken. The hybrid effect, pointed

out in reference [9], continues to be supported by the
results given here for variable slipping friction near the
fiber break.
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FIGURE 9. SCF versus R for various values of � (�ga) for the
separate cases of HE and LE broken fibers. Load level, p/pL � 2.
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